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Problem Statement Foundation (BSL 18B.13)

• We chose to study mass transport in the form of rust and other tarnishing!
• Oxidation reactions on most metals produce deposited oxide films that have 

greater volume than the metal consumed in the reaction.

• Our studies are based on BSL 18B.13
• The textbook problem is in Cartesian

coordinates. Our studies will be around
pipes, which are cylindrical coordinates.

• We will explore how mass transport in a 
pipe also affects heat and momentum
transport.



Solving BSL 18B.13 Part I: Assumptions

To solve this problem, we must first make some assumptions. Most of these 
assumptions are listed in 18B.13’s problem statement.

• Steady State

• No Convection

• Diffusion obeys Fick’s Law

• One-dimensional diffusion as a function of r

• Constant molar film density

• Constant diffusivity

All these assumptions are valid because after the first layer of film forms, diffusion is 
the only reasonable mechanism to cause further oxidation.



Solving BSL 18B.13 Part II: Boundary Conditions

For Cartesian, Our coordinate system is set where 
z is the direction of oxygen gas diffusion. 

• At z = 0, cO2 = c0

• At z = zf, cO2 = 0

We assume that the dissolved concentration of 
oxygen gas is zero at the oxide-metal interface
once the film is sufficiently thick.

For Cylindrical, our coordinate system is set where 
oxygen diffuses radially outward.

• At r = 0, cO2 = c0

• At r = rf, cO2 = 0

O2 gas

Film
Metal



Solving BSL 18B.13 Part III: Combined Flux
Fick’s Law for Cylindrical and Cartesian coordinates is the same for 
the r-direction! So, we can focus on just z for now.
When we apply Equation 18.0-1 from BSL to our system, we get:

• 𝑁𝑁𝑂𝑂2,𝑧𝑧 = −𝑐𝑐𝔇𝔇𝑂𝑂2−𝑀𝑀𝑂𝑂𝑥𝑥
𝜕𝜕𝑥𝑥𝑂𝑂2
𝜕𝜕𝜕𝜕

+ 𝑥𝑥𝑂𝑂2(𝑁𝑁𝑂𝑂2,𝑧𝑧 + 𝑁𝑁𝑀𝑀𝑂𝑂𝑥𝑥,𝑧𝑧)
However, we assumed no convection. We can simplify the 
concentration as well to get:

• 𝑁𝑁𝑂𝑂2,𝑧𝑧 = −𝔇𝔇
𝜕𝜕𝑐𝑐𝑂𝑂2
𝜕𝜕𝜕𝜕

        (Letting 𝔇𝔇 = 𝔇𝔇𝑂𝑂2−𝑀𝑀𝑂𝑂𝑥𝑥  for simplicity)
Our combined flux has simplified down into a Fick’s Law relation.
In addition, we know the concentration gradient across the entire 
system from our boundary conditions!



Solving BSL 18B.13 Part IV: Finding the Gradient

• 𝑁𝑁𝑂𝑂2,𝑧𝑧 = −𝔇𝔇
𝜕𝜕𝑐𝑐𝑂𝑂2
𝜕𝜕𝜕𝜕

Our concentration gradient across the system, ∆
𝑐𝑐𝑂𝑂2
𝑧𝑧

, is already 
known because we have our boundary conditions. If we assume 
that gradient is constant, we can get:

• 𝜕𝜕𝑐𝑐𝑂𝑂2
𝜕𝜕𝜕𝜕

= ∆
𝑐𝑐𝑂𝑂2
𝑧𝑧

= 0−𝑐𝑐0
𝑧𝑧𝑓𝑓−0

= −𝒄𝒄𝟎𝟎
𝒛𝒛𝒇𝒇

Using the boundary conditions:
• At z = 0, cO2 = c0
• At z = zf, cO2 = 0



Solving BSL 18B.13 Part V: Relating the 
Reaction to Diffusion
Here comes the hard part: We know the rate of oxygen diffusion, 
and we know the stoichiometry of the reaction:

• 1
2
𝑥𝑥𝑂𝑂2 + 𝑀𝑀 → 𝑀𝑀𝑂𝑂𝑥𝑥 

So, for every 1
2

x mol of oxygen that diffuses, 1 mol of our metal 
reacts. In equation form, we can relate the reaction to our diffusion:

• 1
2
𝑥𝑥𝑂𝑂2 = 𝑀𝑀𝑂𝑂𝑥𝑥, so 𝑂𝑂2 = 2𝑀𝑀𝑂𝑂𝑥𝑥

𝑥𝑥
.

• Next step is relating oxide production to film thickness



Solving BSL 18B.13 Part VI: Relating the molar 
deposit to film thickness over time
From our previous equation, we can now say that:

• 𝑀𝑀𝑂𝑂𝑥𝑥 = 2𝔇𝔇𝑐𝑐0
𝑥𝑥𝑥𝑥𝑓𝑓

. Now, assuming we know the molar density of the film 
deposit, we can divide both sides to get the thickness over time!

• 𝑀𝑀𝑂𝑂𝑥𝑥
𝑐𝑐𝑓𝑓

= 2𝔇𝔇𝑐𝑐0
𝑥𝑥𝑧𝑧𝑓𝑓𝑐𝑐𝑓𝑓

. Measuring the differential change of our flux gives us:

• ∆𝑀𝑀𝑂𝑂𝑥𝑥
𝑐𝑐𝑓𝑓

= ∆ 2𝔇𝔇𝑐𝑐0
𝑥𝑥𝑧𝑧𝑓𝑓𝑐𝑐𝑓𝑓

. The change of the film thickness is just z, so we 
can convert to differential form to get thickness over time:

• 𝑑𝑑 𝑀𝑀𝑂𝑂𝑥𝑥
𝑐𝑐𝑓𝑓

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝔇𝔇𝑐𝑐0
𝑥𝑥𝑥𝑥𝑐𝑐𝑓𝑓

. Now we can separate and integrate!



Solving BSL 18B.13 Part VII: Integration

• 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝔇𝔇𝑐𝑐0
𝑥𝑥𝑥𝑥𝑐𝑐𝑓𝑓

→ 𝑧𝑧𝑧𝑧𝑧𝑧 = 2𝔇𝔇𝑐𝑐0
𝑥𝑥𝑐𝑐𝑓𝑓

𝑑𝑑𝑑𝑑 (Separate)

Our system ranges in the z direction from 0 to our film thickness zf.
Our system ranges in time from 0 to some arbitrary time t.
Integrating in respect to these bounds gives us:

• ∫0
𝑧𝑧𝑓𝑓 𝑧𝑧𝑧𝑧𝑧𝑧 = ∫0

𝑡𝑡 2𝔇𝔇𝑐𝑐0
𝑥𝑥𝑐𝑐𝑓𝑓

𝑑𝑑𝑑𝑑 

• 1
2
𝑧𝑧𝑓𝑓2 = 2𝔇𝔇𝑐𝑐0𝑡𝑡

𝑥𝑥𝑐𝑐𝑓𝑓



Solving BSL 18B.13 Part VIII: The Answer

Solving for zf gives us:

• 𝑧𝑧𝑓𝑓 =
4𝔇𝔇𝑂𝑂2−𝑀𝑀𝑂𝑂𝑥𝑥𝑡𝑡

𝑥𝑥
𝑐𝑐0
𝑐𝑐𝑓𝑓

This relationship is known as the “Quadratic Law”!

How can we interpret what this result tells us?

Fun fact: The unrevised 2nd edition of BSL incorrectly lists the coefficient 
as 2 instead of 4, likely indicating an integration error or a 
misunderstanding of the reaction stoichiometry.



Graphical Example:
Two Different Metals
• X axis: Time, in seconds

• Y axis: Film thickness, in m2

• Red Line: Aluminum (III) Oxide
• 𝑧𝑧𝑓𝑓 ≈ 6.002 ∗ 10−3 ∗ 𝑡𝑡

• Blue Line: Magnesium (I) Oxide
• 𝑧𝑧𝑓𝑓 ≈ 5.334 ∗ 10−4 ∗ 𝑡𝑡

Sources of constants: Journal of Applied 
Physics, 85 (1999) 7646.

• Other metals like titanium build up so 
slowly they would be a flat line at the 
bottom of this graph!



Modeling Layer Growth 
to Estimate Flow Rates

• Using transport equations, we can model how 
fast the oxide layer grows over time and the 
maximum thickness of the layer.

• As the oxide thickens, the pipe’s inner diameter 
shrinks.

• A smaller diameter increases flow resistance 
and lowers flow rate.

• By modeling growth, we can predict flow 
reduction without destructive 
measurements/testing.



Determining Type of Rust Layer Based on Buildup Rate

• The diffusion coefficient (𝔇𝔇) controls how fast ions or oxygen 
move through the oxide.

• Red rust is porous, so it has a higher 𝔇𝔇 and allows faster diffusion.
• Black rust is dense, leading to a lower 𝔇𝔇 and slower diffusion.
• A lower diffusion rate helps black rust protect the metal surface 

better.



Mass Flow Rate Reduction in a Pipe

• Using our shell balance solutions and our film thickness equations, we can 
predict the mass flow rate drop.

• Hagen-Poiseuille Equation: 𝑤𝑤 = 𝜋𝜋 ℘0−℘𝐿𝐿 𝑅𝑅4𝜌𝜌
8𝜇𝜇𝜇𝜇

. Assume: Everything is constant 
except for the radii, where 𝑅𝑅 = 𝑅𝑅0 − 𝐶𝐶 𝑡𝑡, where C depends on our metal.

• Here we can see the drastic difference again!
• In a 0.01m diameter pipe pumping water.

• Aluminum (Red): Film blocks off pipe at 2.6 seconds.
• Magnesium (Blue): After 5 seconds, pipe is operating

at ~60% efficiency. Blocks off after over 5 minutes.

• A slight difference in material makes a 
huge difference in design!



Heat Conduction Through a Pipe

• Similarly, we can predict a temperature and heat distribution change inside a 
pipe when the radius shrinks. From our heat in a Steam Pipe Notes:

• Heat Flux: 𝑞𝑞 = 𝐾𝐾(𝑇𝑇0−𝑇𝑇𝑠𝑠)
𝑟𝑟 ln 𝐾𝐾

. Temperature: 𝑇𝑇𝑟𝑟−𝑇𝑇0
𝑇𝑇𝑠𝑠−𝑇𝑇0

=
ln𝑟𝑟𝑅𝑅
ln 𝐾𝐾

Heat Flux out of the pipe
decreases by half for 
aluminum around 5 seconds. 
This happens because the 
heat flux is radially outward 
and has more material to 
travel through to escape.

The temperature at the 
outer surface of the pipe is 
even worse, with the 
aluminum pipe 
theoretically hitting 
absolute zero before a 
single second has passed.



Real World Applications

• In power production, the buildup of oxide layers can reduce thermal 
and mechanical output, reducing overall plant performance.

• In chemical production, monitoring and controlling corrosion levels 
limits the impurities found in final products.
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